AIR DRYER 재생 시스템 개선으로 운전비용 절감

삼성SDI(주) 울산공장 운영팀 그린에너지그룹

₩ 사업장 개요

● 생산 품목 : PDP, LCD 外

● 종업원 수 : 2.500명

● 에너지 연간 사용량 (2008년도)

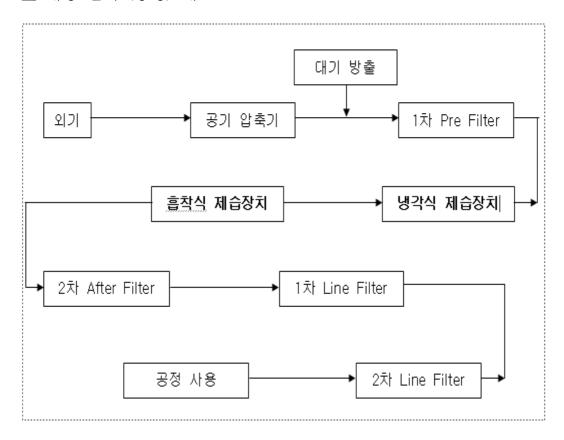
- 연료 : 8,471toe

- 전기 : 357,830_{MW}

🔯 사례 개요

본 사업장의 개선활동 사례로 Dry-air 제조설비 中 Air-dryer의 운전 시스템 개선으로 에너지저감 활동을 추진한 사례.

Air-dryer의 재생시스템 변경을 통한 전력비와 재생 Air를 저감하기 위하여 실시한 결과로 운전방법과 운전 표준을 정립함으로 에너지 저감 활동에 기여한 사례


☑ 실증사례 실시기간

● 계획 수립 : 2009년 01월 ~ 2009년 02월

● 개선 추진 : 2009년 03월 ~ 2009년 05월

● 효과 측정 및 검증 : 2009년 05월 ~ 06월

🔃 대상 설비 (공정) 개요

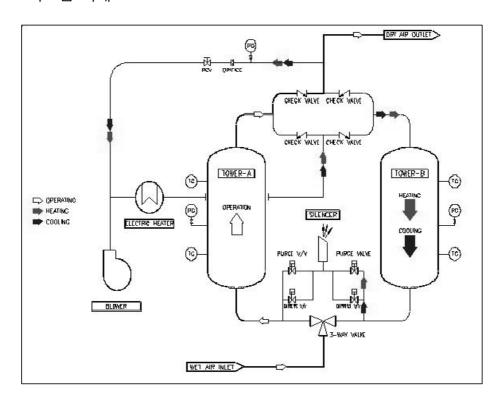
1. 개선 추진 배경

1-1. 재생주기

D.P.O.S 관리 기준노점 운전(사용시간:40Hr)으로 재생기 하부 온도가 올라가지 않는 문제 발생

1-2. Air-dryer 재생

Time기준 실시(Heating : 120분. Cooling : 120분) 실시

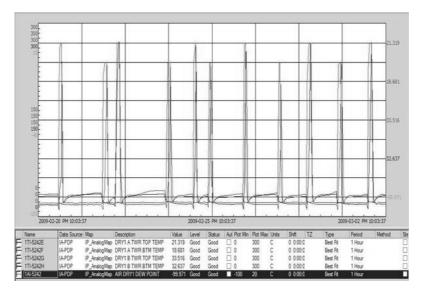

1-3. 문제점

Tower 하부 온도가 설비 재생 요구

- 1) 재생시 노점온도 -70℃이하로 DOWN不 (현재:Tower강제 교체 후 재차 재생실시)
- 2) Air-dryer D.P.O.S 운전/ Time운전을 병행으로 중복재생 발생으로 동력비 Loss가 발생

2. 기존 시스템의 현황 및 분석

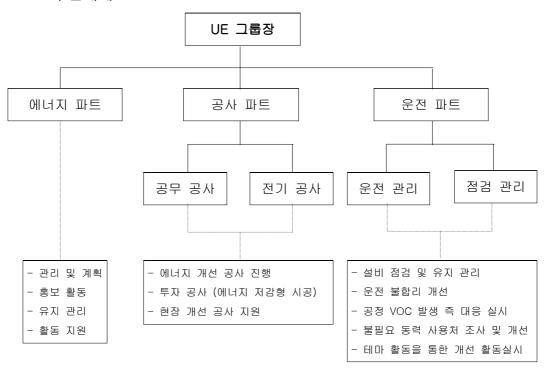
2-1. 시스템 이해



- 시스템 용어 이해

- * AIR DRYER : Dry-Air 제조설비 中 COMPRESSOR에서 생산된 압축 공기를 건조시켜 건조 공기를 만드는 설비
- * 흡착제 재생 : 공기의 건조도(노점)가 일정 수준의 노점을 유지하지 못할 시 흡착제를 재생시키기 위해 전기 Heater이용 240℃의 고온으 로 흡착제를 가열 후, 건조공기 이용 흡착제를 35도 이하로 냉각 시켜 재사용하는 장치재생

2-2. 현상파악

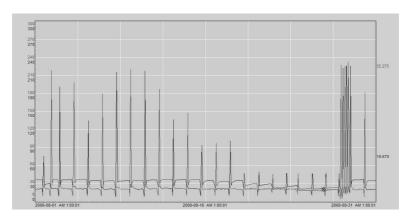

- ① 재생시스템
 - Time 운전(Heating:2HR, Cooling:2HR)
 - : Setting Time에 의한 재생 실시
 - : Heating / Cooling시 종료 Time 동안 동력 사용 지속
 - : 재생시 타 호기와 동시 재생으로 인하 동력 사용량이 증가

- AIR DRYER #1 09년 02월 20일부터3월 02까지 운전 현황
- ② 운전 방식
 - 운전 방식 : D.P.O.S 운전 + Time 운전
 - 재생 방식 : Time 운전(Heating:2HR, Cooling:2HR)
 - * Air-dryer 호기당 통과량은 70% 정도로 사용
 - * 장시간(40시간 이상)으로 재생 사이클은 길어 좋으나, 재생시 내부 충진제 과다오염으로 재생불합리 발생

3. 개선 추진 경위

3-1 추진체계

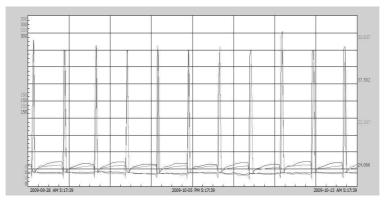
3-2 목표 설정


항목	단위	BASE	GOAL	비고
전력	kW/월	61,955	47,524	

3-3 문제점

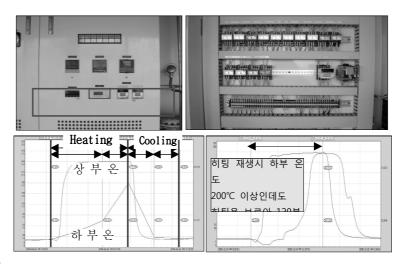
- 재생시스템 운영방식:Time 운전으로 온도와 상관없이 Setting Timer 에 의한 재생으로 과다한 에너지 소비
- 재생 CYCLE이 길어 AIR DRYER TOWER 내부 과다 수분 증가로 재생품질 저하로 강제 2회 재생을 실시(D.P.O.S 운영으로 자동재생이 실시)
- 과다 Heating에 의한 흡착제의 파손으로 인한 불필요 추가비용 발생

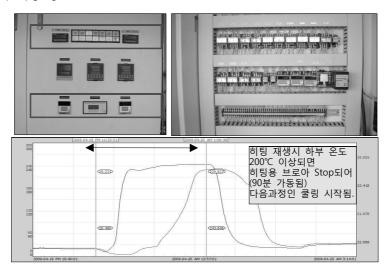
4. 주요 개선 내용


4-1 재생 Cycle 변경

- 개선 前
- Tower 운전 방법 : 노점 상승시 재생 실시(사용시간:40hr)
- 재생시 Tower 관리 온도

 Heating / Cooling시 : 4hr 재생 실시 후 사용

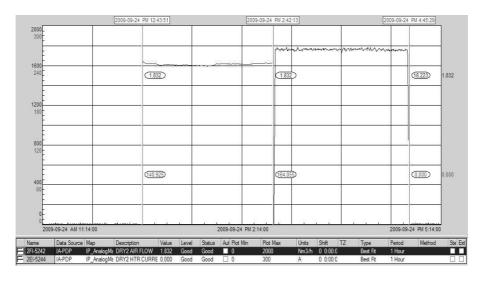

 (노점 관리 기준 이탈시 중복 재생 실시)


- 개선 後
- Tower 운전 방법 : 30hr 사용 후 재생 실시 (Tower 수분 함유량에 대한 Heater 열량 계산으로 운전시간 산정)
- 재생시 Tower 관리 온도

Heating시 : 하부 온도 200℃+Time (소요시간 : 90분) Cooling시 : 하부 온도 35℃+Time (소요시간 : 80분)

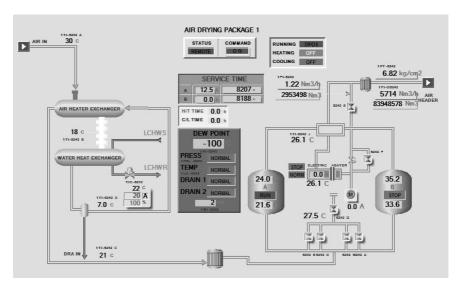
4-2 재생 시스템 프로그램 개선

- 개선 前
- Tower 재생시 장시간 사용으로 인한 하부온도가 올라가지 못해 기준의 노점온도가 나오지 못해 중복재생 실시
- Heating/Cooling시 하/상부 온도가 일정 온도까지 도달해도 주어진 시간 동안 재생 동력은 계속 사용 중



- 개선 後
- Heating시 하부 온도가 200℃가 되면 Blower가 가동 중단되고 다음 Cooling 단계 진행 실시
- Cooling시 상부온도가 35℃ 도달시 재생 종료

4-3. 재생밸브(즉 개선)



- 개선 前
- Heating시 Sequence상 Heater가 ON이 되고 Blower가 가동하기 전까지 재생밸브가 Open되어 재생 Air의 Loss와 Blower의 Trip 발생 원인 발생

- 개선 後
- 재생밸브 동작 Sequence를 Heating시 Blower가 Trip일 때만 Open되도록 Control 회로를 개선함.

4-4 감시 & 경보시스템 보완

- 개선 前
- 설비 감시시스템(DCS)에서 운전(가동) 및 상태 감시
- 타 설비와 동시 재생시 조치가 늦어 동력 사용증가 발생

V	09-05-17 01:46:57:23	700	Р	AREA1	TI-6LCH	CH6 DISCHARGE TEMP	MEAS. < LL	
굣	* 109-05-17-08:58:42:61* ANNA * * *	700	· P	AREA1	· · · PHI-1301D · · · · · ·	CATION D'TWR pH	MEAS: > HL	09-05-18-23:05:44:7
₹	09-05-17 10:00:15:85	700	P	AREA1	CAT1D-HINJA	CA-D INJ TIME OVER	HCI TIME OVER	09-05-20 08:48:37:6
V	09-05-17 10:42:59:52	900	P	AREA3	TI-1105C	AHU-105 AGING TEMP.	MEAS. > HHL	
0.	· 09:05:17 14:25:28:15 AANA · · ·	700 -	p.	· AREA1 · ·	CAT1A-HINJA · · ·	· · · · CA:A 1NJ TIME OVER · · · ·	··· HCI TIME OVER ····	***************************************
∇	09-05-17 20:56:30:32	700	Р	AREA1	TI-1LCF	CH1 EVAPORATOR TEMP	MEAS. > HL	
$\overline{\vee}$	09-05-17 20:56:36:92	700	P	AREA1	TI-1LCE	CH1 CONDENSOR TEMP	MEAS. < LL	
V	09-05-17 21:04:29:03 (Δ/Δ/Δ/Δ	700	P	AREA1	TI-1LCD	CH1 CLW OUTLET TEMP	MEAS. < LL	09-05-19 14:36:32:3
V	09-05-17 21:49:19:73 ΔΔΔΔ	700	Р	AREA1	TI-1LCH	CH1 DISCHARGE TEMP	MEAS. < LL	
∇	09-05-17 21:49:54:1€ AAAA	700	P	AREA1	4XL-5242B	AIR DRY. PKG B RUN	A/D4 B STOP	09-05-19 08:30:48:1
V	09-05-17 23:08:05:23	700	Р	AREA1	TI-6LCC	CH6 CLW INLET TEMP	MEAS. < LL	09-05-19 09:25:33:5
V	09-05-18 00:30:57:42	700	P	AREA1	RO1B-NS	RO B NORMAL STOP	RO B N-STOP	09-05-20 00:23:02:
V	09-05-18 00:31:12:42	700	P	AREA1	FI-1302B	RO B FLOW	MEAS. < LLL	09-05-20 00:23:53:
V.	09-05-18 00:32:05:44	700	. P.	AREA1	RO1D-NS	RO D NORMAL STOP	RO D N-STOP	
5	09-05-18 00:32:12:45	700	Р	AREA1	FI-1302D	RO D FLOW	MEAS. < LLL	
7	09-05-18 00:36:51:60	700	P	AREA1	TI-1LCC	CH1 CLW INLET TEMP	MEAS. < LL	
V	09-05-18 00:54:40:90	700	P	AREA1	4XL-5244	AIR DRY HEATER RUN	A/D4 H/T STOP	09-05-19 08:35:06:2
F	09-05-18 01:21:12:44	700	P	AREA1	3XL-5242B	AIR DRY, PKG B RUN	A/D3 B STOP	09-05-19 11:19:45:
Ö	* 09:05-18 01:59:21:21 ANSA***	700	· · p·	"AREA1"	· · · CIA-1302D · · · · · ·	····· RO OUT CONDUCTIVITY	MEAS. > HL	
V	09-05-18 02:05:15:33	700	P	AREA1	CIA-1302D	RO OUT CONDUCTIVITY	MEAS. > HHL	
V.	. 09-05-18.02:26:57:77. AAAAA	700	. P.	AREA1	4COOL-5242	AIR.DRY.COOLING	. A/DA.C/L STOP	09-05-19.11:23:45:6
7	09-05-18 02:33:54:95 AAAAAA	900	Р	AREA2	LIC-321	B2 BLR DRUM LEVEL	MEAS. > HL	09-05-18 23:59:32:5
7	09-05-18 03:17:57:81	700	P	ARFA1	3XI -5244	AIR DRY HEATER BUN	A/D3 H/T STOP	09-05-19 11:24:52:
	- 09-05-18 04:30:11:16-AAAAAA	900 -	p.	AREA2		B2-BLR-DRUM LEVEL	· MEAS > HHL · · · ·	09-95-18-23:59:26:5
V	* U9-05-18 U5:15:39:TS ANKA***	700	· p	AREA1	***3COO1:5242	"" AIR DRY COOLING	· A/D3'C/L'STOP · · ·	09-05-19 14-89-06-5
F	09-05-18 05:20:38:71 AAAAA	900	P	AREA3	TI-R1103AB	AHU-103A R A TEMP	MEAS. > HHL	00 00 10 11.00.00.0
ř	09-05-18 05:58:31:5C AAAAA	900	P	AREA3	TI-1103AC	AHU-103A AGING TEMP	MEAS > HHL	- :
	D9-05-18 D6:08:43:2E AAAAA	700.	p.		CIA-1302B	RO DUT CONDUCTIVITY	MEAS_> HL	09-05-20-00-24-23-4
	09-05-18 08:19:33:43 AAAAA	900	P	AREA3	TI-1003B	3rd FLOOR	MEAS. > HL	111144 99/40/94.44.55
F.	09-05-18 08:21:28:94 AAAA	700	P	AREA1	CIA-1302B	BO OUT CONDUCTIVITY	MEAS. > HHL	09-05-20 00:24:13:4
	• 09-05-18 11:03:47:86 - AAAA	900-	D	AREA3	TI-1103BG	AHU-102R-AGING TEMP	MEAS.> HHL	09-05-20 00:24:13:4
	09-05-18 13:37:58:31	700		AREA1	ARI-1301B	MBD-B RESISTIVITY	MEAS. < LLL	09-05-19 05:53:32:
V	05-05-10 15.57:58:31	/00	٢	ANEAT	WUI-1301B	וווסט-ם חבטוט וועוו ז	MENS, 4 LLL	U3-U0-19 U0:03:32:5

- 개선 後
- AIR DRYER 설비별 DCS 재생 경보 추가 및 최적화
 - : Tower Change, Heating OFF, Cooling OFF 상태에서 경보 발생시켜 근무자 확인 후 재생 실시

5. 개선 효과

5-1 유형 효과

[개선 효과]

항목	절감량	절감액	투자비	비고	
운전 전력	233,172 kW/년	14,689 천원/년	0 천원/년	자체개선 작업	
합 계	233,172 kW/년	14,689 천원/년	0 천원/년		

[절감량 계산 내역]

항 목	전기	비 고
개선 전 사용량	61,955 kW/월	
개선 후 사용량	47,524 kW/월	
월 절감량	19,431 kW/월	적용 단가 : 63원
년 절감량	233,172 kW/년	
년간 효과 산출 금액	₩ 14,689	9,836원

[투자비 내역]

항 목	금액	비고	
배관 자재류	천원	기시 시기비 케시	
밸브	천원	작업 인건비 제외	
투자비 내역 합계	₩ 0원		

5-2 무형 효과

- 안정적인 Utility 공급으로 품질 사고 예방
- 자체 개선을 통한 Skill-UP 강화 및 투자비 최소화
- 운전방법 및 관리방법 개선을 통한 효율적인 설비 운영
- 개선 활동을 통한 에너지 절감 활동 배가

6. 개선시 애로 사항 과 해결 방안 개요

6-1 개선 시 애로 사항

- 설비의 개선이 계속적으로 지연 될 때
- 운전부서와 개선 방법이 서로간에 다른 길로 갈려고 할 때
- 시운전이 정확히 이루어지지 못하고 있을 때
- 시스템 개선 중 계속적인 문제점이 발생 할 때

6-2 해결 방안 개요

- 동아리 회합을 통한 개선 방안 및 활동 방안 강구
- 운전부서와 상호 협의를 통한 원활한 설비 개선 방안 제시
- 개선 방안을 찾아 문제점을 파악하고 개선 방향을 찾아서 제시할 때